Asymptotic Behavior of Attractors for Inhomogeneous Allen-cahn Equations

نویسندگان

  • C. B. MURATOV
  • M. NOVAGA
چکیده

We consider front propagation problems for forced mean curvature flows with a transport term and their phase field variants that take place in stratified media, i.e., heterogeneous media whose characteristics do not vary in one direction. We provide a convergence result relating asymptotic in time front propagation in the diffuse interface case to that in the sharp interface case, for suitably balanced nonlinearities of Allen-Cahn type. Our results generalize previous results for forced Allen-Cahn equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Well-posedness and long time behavior of a perturbed Cahn-Hilliard system with regular potentials

The aim of this paper is to study the well-posedness and long time behavior, in terms of finite-dimensional attractors, of a perturbed Cahn–Hilliard equation. This equation differs from the usual Cahn–Hilliard by the presence of the term ε(−Δu+ f (u)). In particular, we prove the existence of a robust family of exponential attractors as ε goes to zero.

متن کامل

On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data

Formal asymptotic expansions have long been used to study the singularly perturbed Allen-Cahn type equations and reaction-diffusion systems, including in particular the FitzHugh-Nagumo system. Despite their successful role, it has been largely unclear whether or not such expansions really represent the actual profile of solutions with rather general initial data. By combining our earlier result...

متن کامل

Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting

In this article, we are interested in the study of the asymptotic behavior, in terms of finite-dimensional attractors, of a generalization of the Cahn-Hilliard equation with a fidelity term (integrated over Ω\D instead of the entire domain Ω, D ⊂⊂ Ω). Such a model has, in particular, applications in image inpainting. The difficulty here is that we no longer have the conservation of mass, i.e. o...

متن کامل

Di use interface surface tension models in an expanding ow

We consider a di usive interface surface tension model under compressible ow. The equation of interest is the Cahn-Hilliard or Allen-Cahn equation with advection by a non-divergence free velocity eld. We prove that both model problems are well-posed. We are especially interested in the behavior of solutions with respect to droplet breakup phenomena. Numerical simulations of 1,2 and 3D all illus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014